

Developer’s Manual

Version 4.0

2 May, 2016

©2015-2016 Computer Science Department, Texas Christian University

Developer’s Manual v4.0

ii

Revision Signatures

By signing the following document, the team member is acknowledging that he has read the

entire document thoroughly and has verified that the information within this document is, to the

best of his knowledge, is accurate, relevant and free of typographical errors.

Name Signature Date

Sushant Ahuja

Cassio Lisandro Caposso

Cristovao

Sameep Mohta

Developer’s Manual v4.0

iii

Revision History

The following table shows the revisions made to this document.

Version Changes Date

1.0 Initial Draft 20 April, 2016

2.0 Apache Spark 25 April, 2016

3.0 Apache Hadoop 29 April, 2016

4.0 Formatting and screenshots 2 May, 2016

Developer’s Manual v4.0

iv

Table of Contents
1 Introduction .. 1

1.1 Purpose .. 1

1.2 Overview ... 1

2 Pre-Requisites ... 2

2.1 Ubuntu 15.04 ... 2

2.2 Java 8 download .. 2

2.3 Eclipse Mars .. 2

3 Hadoop .. 3

3.1 Creating and managing Maven Projects in Eclipse Mars ... 3

3.1.1 Open Eclipse Mars and create a new Maven project.. 3

3.2 Writing Word Count and Matrix Multiplication programs ... 7

3.2.1 Word Count-my first MapReduce program.. 7

3.2.2 Matrix Multiplication ... 8

3.3 Install Hadoop on Single Node ... 10

3.3.1 Installation instructions... 10

3.4 Deploy WC and MM on single Node Hadoop .. 14

3.4.1 Export JAR file with all dependencies ... 14

3.4.2 Put the input file on HDFS ... 15

3.4.3 Run the job through terminal .. 15

3.4.4 Access the output from HDFS and interpret results ... 15

3.5 Setup a YARN Cluster .. 15

3.5.1 Why cluster? ... 15

3.5.2 Structure of our cluster ... 16

3.5.3 Install Hadoop on 2 separate machines (workers) Using 3.3 16

3.6 Deploy WC and MM on Cluster ... 20

3.6.1 Store the input files on HDFS... 20

3.7 Recommender.. 20

3.7.1 What is a recommender? .. 20

3.7.2 Recommender types ... 20

3.7.3 Co-occurrence algorithm .. 20

3.7.4 Implementing Co-occurrence recommender .. 21

Developer’s Manual v4.0

v

3.8 K-means Clustering ... 23

3.8.1 What is clustering? ... 23

3.8.2 Application of clustering .. 23

3.8.3 Algorithm.. 23

3.8.4 Implementing K-Means clustering ... 23

4 Spark .. 25

4.1 Creating and managing Maven Projects in Eclipse Mars ... 25

4.1.1 Create a Maven Project: File->New->Project->Maven->Maven project 25

4.1.2 POM file ... 27

4.1.3 Project Structure ... 27

4.2 Writing Word Count and Matrix Multiplication programs ... 29

4.2.1 Word Count-my first Spark program.. 29

4.2.2 Matrix Multiplication ... 29

4.3 Install Spark on Single Node without HDFS .. 30

4.3.1 Installation instructions in detail. ... 30

4.4 Deploy WC and MM on single Node Spark without HDFS ... 31

4.4.1 Export JAR file with all dependencies ... 31

4.5 Install Spark on Single Node with HDFS ... 32

4.6 Deploy WC and MM on single Node Spark with HDFS .. 33

4.6.1 Export JAR file with all dependencies ... 33

4.6.2 Put the input file on HDFS ... 33

4.6.3 Run the job through terminal .. 33

4.7 Setup a YARN Cluster .. 33

4.7.1 Why cluster? ... 33

4.7.2 Structure of our cluster ... 33

4.7.3 Install Hadoop on 2 separate machines (workers) Using Hadoop instructions 33

4.8 Deploy WC and MM on Cluster ... 34

4.8.1 Store the input files on HDFS... 34

4.9 Development in Python ... 34

4.9.1 Install Python in all nodes .. 34

4.9.2 Install and configure PyDev plugin in Eclipse ... 34

4.10 Recommender.. 37

Developer’s Manual v4.0

vi

4.10.1 Collaborative Filtering .. 37

4.10.2 Source Code .. 37

4.10.3 Data Files for Spark Recommender .. 38

4.11 K-means Clustering ... 40

4.11.1 What is clustering? ... 40

4.11.2 Application of clustering .. 40

4.11.3 Algorithm.. 40

5 Glossary of Terms .. 41

Developer’s Manual v4.0

1

1 Introduction

1.1 Purpose

The purpose of this document is to provide the developers with all the necessary tools and

installation guides to setup and continue the development of Frog-B-Data, senior capstone

project. This document contains a detailed breakdown of creating a cluster of nodes on Linux

machines, Hadoop and Spark installation, and running sample codes on standalone as well as a

cluster of nodes. Additionally, we provide detailed description on building the recommender on

two separate frameworks.

1.2 Overview

This document includes the following four sections.

Section 2 - Pre-Requisites: Gives a detailed description of the required operating system and

pre-installed software on machines before beginning of the project.

Section 3 - Hadoop: This section gives a very detailed description on the introduction to

building Maven projects on Eclipse Mars, creating a cluster of network working on multiple

nodes, installation of Hadoop on standalone and cluster of machines, deploying apps on single

node and cluster, recommender and K-Means clustering using Mahout.

Section 4 - Spark: This section gives a very detailed description on the introduction to building

Maven projects on Eclipse Mars, creating a cluster of network working on multiple nodes,

installation of Spark on standalone and cluster of machines, deploying apps on single node and

cluster, Python development in Spark, recommender and K-Means clustering using MLlib.

Section 5 - Glossary of Terms: Lists all the technical terms that are mentioned in this document

with their definitions.

Developer’s Manual v4.0

2

2 Pre-Requisites

2.1 Ubuntu 15.04
All machines involved in this project must be installed with Linux operating systems, preferably

Ubuntu 15.04 which can be downloaded from the following link:

http://releases.ubuntu.com/15.04/ubuntu-15.04-desktop-amd64.iso

2.2 Java 8 download
Java is the integral part of Frog-B-data project and all machines must have the latest versions of

java installed using the following command line instructions:

sudo apt-get update

sudo add-apt-repository ppa:webupd8team/java

sudo apt-get update

sudo apt-get install oracle-java8-installer

After entering these commands, verify that java is installed on your machine using the following

command:

java –version

2.3 Eclipse Mars
This project requires an IDE to develop the applications on Hadoop and Spark. Download the

Eclipse Mars from the following link:

https://www.eclipse.org/downloads/download.php?file=/oomph/epp/mars/R2/eclipse-inst-

linux64.tar.gz&mirror_id=1135

Extract the downloaded file in your current directory, and go inside the newly created directory

called ‘eclipse-installer’, and install eclipse by double clicking on ‘eclipse-inst’. In the next

prompt window, choose the first option ‘Eclipse IDE for Java Developers.’ Choose your

installation folder and click Install.

http://releases.ubuntu.com/15.04/ubuntu-15.04-desktop-amd64.iso
https://www.eclipse.org/downloads/download.php?file=/oomph/epp/mars/R2/eclipse-inst-linux64.tar.gz&mirror_id=1135
https://www.eclipse.org/downloads/download.php?file=/oomph/epp/mars/R2/eclipse-inst-linux64.tar.gz&mirror_id=1135

Developer’s Manual v4.0

3

3 Hadoop

3.1 Creating and managing Maven Projects in Eclipse Mars

3.1.1 Open Eclipse Mars and create a new Maven project

 Create a Maven Project: File->New->Project->Maven->Maven project

 Use the default Maven Version and click next

Developer’s Manual v4.0

4

 Enter the group Id and the artifact Id and the appropriate package name will be

generated for you.

Group ID: identifies your project uniquely among all the projects.

Artifact ID: is the name of the jar without version.

 POM file

 POM stands for Project Object Model.

 It is an XML representation of a Maven project held in a file named

‘pom.xml’.

 This file contains all the information about a project which includes all the

plugins required to build the project and the dependencies of a project. Maven

manages the list of all the programs and projects that a project depends on

through the POM file.

 By default, your POM file should look like this:

Developer’s Manual v4.0

5

 Project Structure

 Directories

This is how a typical project directory looks as soon as you make a Maven

project. As you keep adding dependencies in POM file, the list here would

get bigger.

Developer’s Manual v4.0

6

 Build Path

Remove the default JRE System Library by right clicking on project,

Select Build Path->Configure Build Path as shown in the following

screenshot. Remove this library by pressing the remove button on the

right.

Now, go to Add Library then select JRE System Library from the window

prompt, press ‘Next’ and then press ‘Finish’. You should see something similar as

depicted in the following screenshot:

Developer’s Manual v4.0

7

3.2 Writing Word Count and Matrix Multiplication programs

3.2.1 Word Count-my first MapReduce program

 Word Count-Hello World of Hadoop

 Now you are all set to write your first MapReduce program, Word Count.

 Word Count is called the ‘Hello World’ program of the Big Data

development.

 It is exactly what you think. We will have a text file as the input and we write

MapReduce code to count the number of words in that input file.
 Setup the WC project

 Create a new Maven project named WordCount

 Edit the pom.xml file for Maven dependencies

 Hadoop-client

http://mvnrepository.com/artifact/org.apache.hadoop/hadoop-

client/2.7.1

 Edit the POM file to include the required dependencies. Add the Apache

Mahout and Apache Hadoop dependency in pom.xml. Here is a screenshot of

what your POM file should look like:

 Fix the build path

 Now fix the build path as mentioned earlier in the manual.

 Word Count Algorithm

 The Map phase in our word count code filters the input data and gives the

value of 1 to each word of the text file.

http://mvnrepository.com/artifact/org.apache.hadoop/hadoop-client/2.7.1
http://mvnrepository.com/artifact/org.apache.hadoop/hadoop-client/2.7.1

Developer’s Manual v4.0

8

 The Reduce phase then takes the input from the map phase (filtered data) and

then counts the number of time each word occurs (sorting by key).

 Format of input file

 The input file can be normal text file with words in it. These words can be in

any language and in any format.

 Format of output file

 The output file will have each word and its count in each line and will be

sorted alphabetically.

 Congratulations on running your first MapReduce Program

3.2.2 Matrix Multiplication
 Matrix Multiplication

 Next we build matrix multiplication MapReduce Program to multiply two

matrices.
 Setup the MM project

 Create a new Maven project named MatrixMultiply

 Edit the pom.xml file for Maven dependencies

 The POM file will be the same as we had for word count as we need

Apache Mahout and Apache Hadoop as the dependencies.

 Fix the build path

 Fix the build path as we mentioned earlier in the manual.
 Format of input files

 We will have 2 input files. Both the files will have one matrix each. Each line

of the input files will have the name of the matrix, row, column, value.
For example:

Matrix A Matrix B

(2*5) (5*3)

 Matrix Multiply Algorithm

Developer’s Manual v4.0

9

 There are two Map functions, one for each matrix. They filter and sort the data

according to key and send this sorted data to the reduce phase.

 The reduce function performs the summary operation of multiplying the

appropriate values.

 Format of output file

 The output will have the final matrix in the form of: row, column, value

Your output file should look something like this:

Result Matrix

(2*3)

 Congratulations on running your second MapReduce Program

Developer’s Manual v4.0

10

3.3 Install Hadoop on Single Node

3.3.1 Installation instructions

 The following commands will help you set up a dedicated Hadoop user. In this

manual, we have used a user called ‘hduser’, but you can use any other username.

Also you would have to get root access for the dedicated user by modifying the

sudoers file.

sudo addgroup hadoop

sudo adduser --ingroup hadoop hduser

sudo vim /etc/sudoers

 Hadoop requires SSH access to manage its nodes i.e. the remote machines in the

cluster and the local machine. The following commands would help you install SSH

and configure it to allow SSH public key authentication so that you would not have to

enter the password each time you try to access a remote machine.

 If asked for a filename, just leave it blank and press enter to continue.

 Also, you have to disable IPV6 as the Hadoop version we used does not

support it. This will be done by modifying the sysctl.conf file.

sudo apt-get install openssh-server

ssh -keygen - t rsa -P “”

cat $HOME/.ssh/id_rsa.pub >> $HOME/.ssh/authorized_keys

sudo vim /etc/sysctl.conf

 Update the file with the following lines:

 Once you are done with these commands, reboot the machine with the

following command.

sudo reboot

 Download Hadoop 2.7.1* from the following link:
http://supergsego.com/apache/hadoop/common/hadoop-2.7.1/hadoop-2.7.1.tar.gz

*Note - During the period of our project, we worked with Hadoop 2.7.1,

but we are sure that while reading this manual there will updated versions

available. If you want you can go ahead and download the most recent version,

but remember to change some commands wherever required.

http://supergsego.com/apache/hadoop/common/hadoop-2.7.1/hadoop-2.7.1.tar.gz

Developer’s Manual v4.0

11

 The following commands will help you extract the zipped Hadoop folder and

move the Hadoop folder to Hadoop folder as per your convenience.

 Then you will have to assign ownership of that folder to the user you chose

using the chown command.

 Further, we create the namenode and datanode folders in the Hadoop-

tmp folder and assign the ownership of this temp folder to the user you

chose using the chown command again.

tar xvcf hadoop-2.7.1.tar.gz

sudo mv hadoop-2.7.1 /usr/local/hadoop

sudo chown hduser:hadoop -R /usr/local/hadoop

sudo mkdir -p /usr/local/hadoop-tmp/hdfs/namenode

sudo mkdir -p /usr/local/hadoop-tmp/hdfs/datanode

sudo chown hduser:hadoop -R /usr/local/hadoop-tmp

 Now we will modify the bash file to include the new variables. The following

command will open the bash file.

sudo vim ./bashrc

 Append the bash file with the following variables:

 Now we will be modifying some configuration files of Hadoop. Let’s open the

directory which has all the Hadoop configuration files.

cd /usr/local/Hadoop/etc/hadoop

 We need to set JAVA_HOME by modifying the hadoop-env.sh file.

This variable in the hadoop-env.sh helps Hadoop finds JAVA on the

machine.

vim /usr/local/hadoop/etc/hadoop/hadoop-env.sh

Developer’s Manual v4.0

12

 Modify the core-site.xml file. This file contains the properties that override

the default core properties. The only property that we change is the url of the

default file system.

vim /usr/local/hadoop/etc/hadoop/core-site.xml

 Now we modify the hdfs-site.xml. We change the value of dfs.replication

(default block replication) to 1 as we are running Hadoop on a single node

right now.

 We also change the value of dfs.name.dir and dfs.data.dir which

specify where on the local filesystem the DFS namenode and DFS

datanode blocks should be stored.

vim /usr/local/hadoop/etc/hadoop/hdfs-site.xml

Developer’s Manual v4.0

13

 Now modify the yarn-site.xml. In this we set up yarn to work with

MapReduce Jobs.

vim /usr/local/hadoop/etc/hadoop/yarn-site.xml

 Modify the mapred-site.xml. We only change the value of the MapReduce

framework to yarn as we yarn as our runtime framework for executing

MapReduce jobs.

vim /usr/local/hadoop/etc/hadoop/mapred-site.xml

sudo reboot

start-dfs.sh

start-yarn.sh

 Note – If you were guided here from Spark single node (with HDFS) installation

Click here to continue.

Developer’s Manual v4.0

14

3.4 Deploy WC and MM on single Node Hadoop

3.4.1 Export JAR file with all dependencies

 Right-click on the project -> Run As -> Maven Build

 On the pop-up window, write ‘clean install’ in the Goals text box and click

run. Here is a screenshot of what it should it look like.

 You should see the progress of Maven building the project on the console.
 You can find the newly created jar file of the project inside the ‘target’ folder of the

project.

Developer’s Manual v4.0

15

Note: All these 4 steps have to be followed in case of both: word count and

matrix multiplication.

3.4.2 Put the input file on HDFS
 Now we have to put our input file(s) on the HDFS before running the job on the

Single –Node Hadoop.

 Before putting the file on the HDFS, we need to create a directory on HDFS.

The following command will help you do that.
hadoop fs –mkdir –p directory_path

The command to put any file on HDFS is:

hadoop fs -put path_to_local_file path_on_hdfs

In the case of word count, you will have to put only one input file as it requires

only one input file, but in the case of matrix multiplication you will need to put

both the files as mentioned earlier in the manual.

3.4.3 Run the job through terminal
 Running the job from the terminal is easy. The following is the generalized command

to do that.

hadoop jar path_of_jar package_name.classname args

3.4.4 Access the output from HDFS and interpret results

 Accessing the output from HDFS requires you to open the Hadoop Web interface.
Click on Utilities -> Browse the filesystem.

Find your output directory and you have the option of downloading the output file

or opening it.

3.5 Setup a YARN Cluster

3.5.1 Why cluster?

 Hadoop was never built to run on a single node. There is no point of doing that except

when you are testing your MapReduce code.
 Hadoop becomes powerful and runs at its best in a cluster of nodes.
 Parallel processing is only possible in a cluster where the data can be distributed

among different nodes (datanodes) which are controlled by a manager node

(namenode).

Developer’s Manual v4.0

16

3.5.2 Structure of our cluster
 Our Cluster had 3 nodes, each with a configuration as follows:

 8 GB RAM

 500 GB HDD

 Ubuntu 15.04
 Manager-Worker Architecture

 1 Manager

 2 Workers
3.5.3 Install Hadoop on 2 separate machines (workers) Using 3.3

 Change the appropriate configuration files

sudo vim /etc/hosts

 This is just a sample. Use appropriate names and IP addresses based on your

machines. The hosts file will have to be changed on all the nodes of the

cluster.

 Modify the masters file on all the nodes. This file tells hadoop which machine

in the cluster is the manager.

vim /usr/local/hadoop/etc/hadoop/masters

 Modify the slaves file on all the nodes. This file lists all the worker nodes of

the cluster.

vim /usr/local/hadoop/etc/hadoop/slaves

 We will have to modify the core-site.xml file to change the url of the default

filesystem as it cannot be localhost now.

vim /usr/local/hadoop/etc/hadoop/core-site.xml

Developer’s Manual v4.0

17

 We modify the hdfs-site.xml file to change the value of dfs.replication as we

will have 2 data nodes (2 workers) now.

And also we assign the https address of the namenode which will provide us

with the web interface of the HDFS filesystem.

 We may or may not have specify the data.dir property depending on the node,

if it is a data node we need to have that property or else not. If you want to

have your manager node as a data node too, then you will need to specify this

property in manager node too.

vim /usr/local/hadoop/etc/hadoop/hdfs-site.xml

 Modify the yarn-site.xml to give URL values to resource manager of yarn for

easy access from the web.

vim /usr/local/hadoop/etc/hadoop/yarn-site.xml

Developer’s Manual v4.0

18

 Modify the mapred-site.xml file to give url values to the MapReduce job

tracker and Job history web access.

vim /usr/local/hadoop/etc/hadoop/mapred-site.xml

 Once you are finished with all these modifications in the configuration files,

rebbot your machine and start Hadoop!

sudo reboot

start-dfs.sh

start-yarn.sh

 Here is the overview of the Web interface of HadoopManager. The url would

be hadoopmanager: 50070.

Developer’s Manual v4.0

19

Click on data nodes to check your data nodes and their current state.

Click here to continue YARN cluster installation for Spark.

Developer’s Manual v4.0

20

3.6 Deploy WC and MM on Cluster

3.6.1 Store the input files on HDFS

 The command to upload a file on the HDFS in a cluster remains the same as in case

of Single-Node Hadoop.

hadoop fs -put path_to_local_file path_on_hdfs

 Run the jobs through terminal
The command to run a MapReduce Job on the cluster also remains the same as in

case of Single-Node Hadoop.

hadoop jar path_of_jar package_name.classname args

 Access the output from the HDFS

The method of accessing the output file(s) from the HDFS remains the same as in

case of Single-Node Hadoop i.e. through the web interface.

3.7 Recommender

3.7.1 What is a recommender?

 Now we come to the most interesting part of the project where we build our own

recommendation system!

 We are sure that you might have come across some mind of recommendation system

in your lives.

 The most popular ones are Netflix, Amazon, and Facebook etc.

 If any of you who do not what a recommender is, it is a system which recommends

you objects based on your history of ‘likes’ and ratings.

3.7.2 Recommender types

 There are two basic types of recommendation engine algorithms:

 User-based: The items will be suggested to the user based on what other

people with similar tastes seem to like.

 Item-based: The items will be suggested to the user based on finding similar

items to the ones the user already likes, again by looking to others’ apparent

preferences.

3.7.3 Co-occurrence algorithm

 We used the co-occurrence algorithm with the help of Apache Mahout to build the

recommendation system in Hadoop. This type of algorithm is Item-based.

 In this algorithm, we start by creating a co-occurrence matrix. It is not as hard as it

sounds!

 We begin by finding some degree of similarity between any pair of items. Imagine

computing a similarity for every pair of items and putting the results into a giant

matrix. This is called a co-occurrence matrix.

Developer’s Manual v4.0

21

 This matrix describes associations between items, and has nothing to do with the

users. It computes the number of times each pair of items occur together in some

user’s list of preferences.

 For example, if there are 17 users who express liking for both items A and B, then A

and B co-occur 17 times.

 Co-occurrence is like similarity, the more two items turn up together, the more

related/similar they are.

 The next step is to compute a user vector for each user. This vector tells which movie

has a specific user watched and which ones has he not.

 The final step to get the recommendations is to multiply the co-occurrence matrix

with the user vector.

3.7.4 Implementing Co-occurrence recommender

 We used the movie lens data for our recommender. Here is a link of the movie lens

data: http://grouplens.org/datasets/movielens/

 The original format of the movie lens data is:

userId movieId rating timestamp

 We convert* this format to the following format:

userId,movieId

*Note – The source code to convert from the movie lens format to our format

can be found on the link:

http://brazos.cs.tcu.edu/1516frogbdata/deliverables.html

 We do this because our recommender in Hadoop is not rating-based, rather it is item-

based. It only takes into account the movies watched by the user.

 In the next step, you would have to upload the input file with the users and the movies

they have watched on the HDFS using the hadoop ‘put’ command as mentioned

earlier in the manual.

 You can find the source code of our whole recommender on the link:

http://brazos.cs.tcu.edu/1516frogbdata/deliverables.html

 The command to run our recommender is as follows:

hadoop jar path_of_jar_file frogbdata.tcu.recommendereg.RecommenderJobRun

path_of_input_file_HDFS path_of_output_file_HDFS num_of_recommendations

 There will be 6 jobs that will run in order to give the recommendations. Here is a

screenshot of what it should look like:

http://grouplens.org/datasets/movielens/
http://brazos.cs.tcu.edu/1516frogbdata/deliverables.html

Developer’s Manual v4.0

22

 Generating Users Vectors: generates a user vector for each user which shows

what movies has a specific user watched.

 Calculating co-occurrence: This job calculates the co-occurrences between

every pair of movies. This job might take a while.

 Item Index: This job has a quick map function to get the index of each item.

 Partial Multiply: This job wraps the vectors and gets them ready for partial

multiply.

 Partial Product- Final: This is where we find the product of the matrices. This

Job takes the longest time among all of them.

 Final recommendation: this job sorts the recommendations and removes the

movies that the user has already watched and gives the final

recommendations.

 The output file will be on the HDFS in the directory you mentioned in the command

to run the job.

 The output file will have the recommendations for each user and each user will have a

value attached to it.

Here is what it should look like:

Developer’s Manual v4.0

23

3.8 K-Means Clustering

3.8.1 What is clustering?

 As the name suggests, Clustering implies grouping items together. But on the basis of

what?

 We use clustering in Big Data industry to group similar items/users together for better

data management.

 It has numerous applications in the business and helps them to target their customers

in a better way.

 K-Means algorithm is a simple, but widely used algorithm used for clustering. All

objects need to be represented as a set of numerical features. Also, the user has to

specify the number of groups (k) he wants.

3.8.2 Application of clustering

 Have you ever been creeped out of the advertisements on applications like Facebook,

YouTube or any other website you visit? If yes, it is because of clustering. If not, then

look carefully!

 The advertisements have become personalized to a great extent. If you searching

pattern on google shows that you read a lot about Big Data, notice how you are

flooded with Big Data company advertisements and jobs. It happened with us!

 There is no magic that goes behind this. The clustering algorithms help group similar

kind of users together.

 This is how a bank decides to give you a loan or not. Based on your social security,

past credit and other financial details they put you in an appropriate group.

3.8.3 Algorithm

 The first step is to choose the number of clusters (k). For example, the user chooses to

have 5 clusters.

 In the next step, we choose 5 random records as the centroids of these 5 clusters.

 Now we have 5 cluster centroids but they are randomly chosen.

 Next, we assign each record/point to a specific cluster based on the distance of that

point with the centroid of that cluster.

 Next, we compute the distances from each point and allot points to the cluster where

the distance from the centroid is minimum.

 Once we are done with re-allotting the points to their new and final clusters, we create

separate files for each cluster and save them into HDFS.

3.8.4 Implementing K-Means clustering

 The input files used for K-Means clustering were generated randomly from our code.

The input file will be multi-dimensional and each line will have at least 15 records.

Here is what our file looked like:

Developer’s Manual v4.0

24

It is just a bunch of numbers! This is unstructured data and it might be a part of

an excel file and now we will cluster each and every record.

 In the next step you would put this file on the HDFS using the hadoop put command.

 Again, you can find our source code for K-Means clustering on the following link:

http://brazos.cs.tcu.edu/1516frogbdata/deliverables.html

 Next, you would run the job using the following command
hadoop jar path_of_jar_file apache.KMJob path_of_input_file_HDFS

path_of_output_file_HDFS

 Here is what your output should look like:

 As you can observe in this file, it gives the cluster number (“CL-114”), its radius (r)

and distance of each record from the cluster’s centroid. Also it lists each record that is

a part of that cluster.

http://brazos.cs.tcu.edu/1516frogbdata/deliverables.html

Developer’s Manual v4.0

25

4 Spark

4.1 Creating and managing Maven Projects in Eclipse Mars

4.1.1 Create a Maven Project: File->New->Project->Maven->Maven project

 Use the default maven version and click next.

Developer’s Manual v4.0

26

Enter the group Id (say tcu.frogbdata) and artifact id (name of the project, say

wordcount) and the appropriate package name will be generated.

Developer’s Manual v4.0

27

4.1.2 POM file

4.1.3 Project Structure

 Directories

 This is a typical directory structure of a Maven project:

Developer’s Manual v4.0

28

 Build Path

Remove the default JRE System Library by right clicking on project,

select Build Path->Configure Build Path as shown in the following

screenshot. Remove this library by pressing the remove button on the

right.

Now, go to Add Library then select JRE System Library from the window

prompt, press next and then press Finish.

You should see something similar as depicted in the following screenshot:

Developer’s Manual v4.0

29

4.2 Writing Word Count and Matrix Multiplication programs

4.2.1 Word Count-my first Spark program

 Word Count-Hello World of Spark
 Setup the WC project

 Create a new Maven project named WordCount

 Edit the pom.xml file for Maven dependencies

 Hadoop-client
http://mvnrepository.com/artifact/org.apache.hadoop/hadoop-

client/2.7.1

http://mvnrepository.com/artifact/org.apache.spark/spark-

core_2.10/1.5.2

 Fix the build path
 Word Count Algorithm

 The Transformation phase in our word count code filters the input data and

gives the value of 1 to each word of the text file.

 The Action phase then takes the input from the map phase (filtered data) and

then counts the number of time each word occurs (sorting by key).

 All these two functions are performed in Spark main abstraction RDD

(Resilient Distributed Datasets)

 Format of input file

 Refer to our User’s Manual and Research Result document.

 Format of output file

 The output file will have each word and its count in each line and will be

sorted alphabetically.

 Congratulations on writing your first Spark program

4.2.2 Matrix Multiplication
 Matrix Multiplication

 Next we build matrix multiplication Java Spark Program to multiply two

matrices.
 Setup the MM project

 Create a new Maven project named MatrixMultiply

 Edit the pom.xml file for Maven dependencies

 Hadoop-client
http://mvnrepository.com/artifact/org.apache.hadoop/hadoop-

client/2.7.1

http://mvnrepository.com/artifact/org.apache.spark/spark-

core_2.10/1.5.2

 Fix the build path

 Fix the build path as we mentioned earlier in the manual

http://mvnrepository.com/artifact/org.apache.hadoop/hadoop-client/2.7.1
http://mvnrepository.com/artifact/org.apache.hadoop/hadoop-client/2.7.1
http://mvnrepository.com/artifact/org.apache.spark/spark-core_2.10/1.5.2
http://mvnrepository.com/artifact/org.apache.spark/spark-core_2.10/1.5.2
http://mvnrepository.com/artifact/org.apache.hadoop/hadoop-client/2.7.1
http://mvnrepository.com/artifact/org.apache.hadoop/hadoop-client/2.7.1
http://mvnrepository.com/artifact/org.apache.spark/spark-core_2.10/1.5.2
http://mvnrepository.com/artifact/org.apache.spark/spark-core_2.10/1.5.2

Developer’s Manual v4.0

30

 Matrix Multiply Algorithm

 Get both matrices files and transform into a RDD

 Convert both RDD into Matrix Entry type.

 Convert both Matrix entries into coordinate matrix RDD and cache them since

they are going to be used multiple time.

 Now convert both coordinate matrices into Block matrix.

 Then multiply both Block matrices and save the output file.

 Format of input file

 Refer to User’s and Research Results document.

 Format of output file

 The output will have the final matrix in the form of: row, column, value.

 Congratulations on writing your second Spark program

4.3 Install Spark on Single Node without HDFS

4.3.1 Installation instructions in detail.

 Download the latest version of scala or get the version used in the project from the

following link:

http://downloads.lightbend.com/scala/2.11.8/scala-2.11.8.tgz

 Go to terminal, inside the Downloads directory and enter the following commads:

$ tar xvf scala-2.11.8.tgz

$ sudo mv scala-2.11.8 /usr/bin/scala

$ cd

$ vim .bashrc

 Add the following lines at the bottom of your bashrc file:

 Restart bashrc

$. .bashrc

 Check the scala version to verify successful installation
$ scala -version

http://downloads.lightbend.com/scala/2.11.8/scala-2.11.8.tgz

Developer’s Manual v4.0

31

 Install git
$ sudo apt-get install git

$ git --version

 Download Spark from the following link:

http://d3kbcqa49mib13.cloudfront.net/spark-1.5.2-bin-hadoop2.6.tgz

 Extract it in the home directory and rename the folder as ‘spark’ and enter the

following commands:

$ cd spark

$ sbt/sbt assembly

 Verify Spark installation by running a Pi example:
$./bin/run-example SparkPi 10

 You should get Pi’s value as 3.140… it means that Spark is successfully installed on

your computer.

4.4 Deploy WC and MM on single Node Spark without HDFS

4.4.1 Export JAR file with all dependencies

 Right-click on the project -> Run As -> Maven Build

 On the pop-up window, write ‘clean install’ in the Goals text box and click

run. Here is a screenshot of what it should it look like.

http://d3kbcqa49mib13.cloudfront.net/spark-1.5.2-bin-hadoop2.6.tgz

Developer’s Manual v4.0

32

 You should see the progress of Maven building the project on the console.

 You can find the newly created jar file of the project inside the ‘target’ folder of the

project.

Note: All these 4 steps have to be followed in case of both: word count and

matrix multiplication.

 Run the job through terminal

 Run the following command:
./spark/bin/spark-submit --master local path_to_jar package.class path_to_input path_to_output

 Access the output from the desired location

4.5 Install Spark on Single Node with HDFS

4.5.1 Hadoop Installation

If Hadoop is not installed on your machine, click here and follow the instructions of

Hadoop installation on single node using this link:

stop-dfs.sh

stop-yarn.sh

vim /home/username/spark/conf/spark-env.sh

start-dfs.sh

start-yarn.sh

Developer’s Manual v4.0

33

4.6 Deploy WC and MM on single Node Spark with HDFS

4.6.1 Export JAR file with all dependencies

 Refer to the above instructions (4.4.1)

4.6.2 Put the input file on HDFS
 Refer to 3.4.2 for instructions

4.6.3 Run the job through terminal
 Run the following command:

$./spark/bin/spark-submit --master yarn-cluster --num-executors 5 --executor-cores 1 --executor-

memory 3G path_to_jar package.class path_to_input path_to_output

4.6.4 Access the output from HDFS and interpret results
 Refer to 3.4.4 for instructions

4.7 Setup a YARN Cluster

4.7.1 Why cluster?

 Hadoop was never built to run on a single node. There is no point of doing that except

when you are testing your Spark code.
 Spark becomes powerful and runs at its best in a cluster of nodes.
 Parallel processing is only possible in a cluster where the data can be distributed

among different nodes (datanodes) which are controlled by a manager node

(namenode).

4.7.2 Structure of our cluster

 Our Cluster had 3 nodes, each with a configuration as follows:

 8 GB RAM

 500 GB HDD

 Ubuntu 15.04
 Manager-Worker Architecture

 1 Manager

 2 Workers

4.7.3 Install Hadoop on 2 separate machines (workers) Using Hadoop instructions

 Click here for instructions if you have not set-up a cluster.
 Now change the appropriate configuration files

stop-dfs.sh

stop-yarn.sh

vim /home/username/spark/conf/spark-env.sh

Developer’s Manual v4.0

34

start-dfs.sh

start-yarn.sh

4.8 Deploy WC and MM on Cluster

4.8.1 Store the input files on HDFS

 Refer to 3.6.1

4.9 Development in Python

4.9.1 Install Python in all nodes

 Python should come pre-installed in Ubuntu 15.04 and above.

4.9.2 Install and configure PyDev plugin in Eclipse

 Go to Help->Eclipse Marketplace

Search “PyDev” in the Find textbox

Select PyDev and install it with all default settings and restart eclipse.

 Python Interpreters

Developer’s Manual v4.0

35

In Eclipse, go to Window->Preferences

In the left pane, select PyDev->Interpreters->Python Interpreter

Click Quick Auto-Config to include the python path to the interpreter.

Run the following commands in order to install NumPy (Numerical Python)
sudo apt-get update

sudo apt-get install python-numpy

 In the Libraries tab, add the following folders:

 /home/username/spark/python

 /usr/lib/python2.7/dist-packages

 /usr/local/bin

 Add the following Zips

 /home/username/spark/python/lib/py4j-0.8.2.1-src.zip

 In the Environment tab, add the following Variables:

 Variable Name: PROJECT_HOME, value: ${project_loc}

 Variable Name: PYSPARK_SUBMIT_ARGS, value: --master local[*] –

queue PyDevSpark1.5.1 pyspark-shell

 Variable Name: SPARK_CONF_DIR, value: /home/username/spark/conf

 Variable Name: SPARK_HOME, value: /home/username/spark

 Variable Name: SPARK_LOCAL_IP, value: IP address of the machine

Developer’s Manual v4.0

36

Restart Eclipse for all the changes to take an effect.

 Fix dependencies

 Installation of pip

 Download pip from the following link

https://bootstrap.pypa.io/get-pip.py

 Go into the downloaded directory and type the following command to

install pip on your computer.
sudo python get-pip.py

 This will also install python setup tools and wheel if not already

installed. Verify the installation of pip by entering the following

command:
whereis pip

 If you get the following result, then the installation was successful.

Pip: /usr/local/bin/pip /usr/local/bin/pip2.7

 Installation of pydoop using pip

 Enter the following command:
sudo pip install pydoop

 Verify the installation of pydoop by entering the following command:
whereis pydoop

 If the result is following, then the installation was not successful.

Pydoop:

 If this is the case, you will need to install pydoop manually.

 Installation of pydoop manually

 Download the tar file of pydoop from the following link:

https://pypi.python.org/packages/75/75/085a6410b085f231328884ca3

349287a8705822ad8afdca715401e5c4f33/pydoop-

1.2.0.tar.gz#md5=e6b1dff3cf19cd7815b7134e67f683c4

https://bootstrap.pypa.io/get-pip.py
https://pypi.python.org/packages/75/75/085a6410b085f231328884ca3349287a8705822ad8afdca715401e5c4f33/pydoop-1.2.0.tar.gz#md5=e6b1dff3cf19cd7815b7134e67f683c4
https://pypi.python.org/packages/75/75/085a6410b085f231328884ca3349287a8705822ad8afdca715401e5c4f33/pydoop-1.2.0.tar.gz#md5=e6b1dff3cf19cd7815b7134e67f683c4
https://pypi.python.org/packages/75/75/085a6410b085f231328884ca3349287a8705822ad8afdca715401e5c4f33/pydoop-1.2.0.tar.gz#md5=e6b1dff3cf19cd7815b7134e67f683c4

Developer’s Manual v4.0

37

 Extract the file and go inside the extracted directory. Now enter the

following commands:
vim pydoop/Hadoop_utils.py

 Go to line 410 and replace this line

self.__hadoop_home = None by

self.__hadoop_home = ‘/usr/local/hadoop’

vim pydoop/utils/jvm.py

 Go to line 27 and replace the line
return os.environment[“JAVA_HOME”] by

return ‘/usr/lib/jvm/java-8-oracle’

 Now enter the following command:
sudo python setup.py install

 Verify the installation of pydoop by entering the following command:
whereis pydoop

 You should get the following result:pydoop:

pydoop: /usr/local/bin/pydoop

4.10 Recommender

4.10.1 Collaborative Filtering

 In Spark, we used collaborative filtering algorithm using Apache MLlib library.

According to Apache Spark documentation on MLlib collaborative filtering,

“Collaborative filtering is commonly used for recommender systems. These

techniques aim to fill in the missing entries of a user-item association

matrix. spark.mllib currently supports model-based collaborative filtering, in which

users and products are described by a small set of latent factors that can be used to

predict missing entries. spark.mllib uses the alternating least squares

(ALS) algorithm to learn these latent factors.”

 To learn more about ALS algorithm, refer to this link.

4.10.2 Source Code

 To get the source code of our recommender, follow this link:
http://brazos.cs.tcu.edu/1516frogbdata/deliverables.html
Name of the file: MovieLensALSMain.py

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=10&sqi=2&ved=0ahUKEwizxp7OirrMAhUjuoMKHRkwDN0QFghCMAk&url=http%3A%2F%2Fwww.mf.uni-lj.si%2Fdokumenti%2Fcd96efab02612fe28baec3677c16b989.ppt&usg=AFQjCNHQf6dk5jihx6FhGuQ-0s4ORM3vUQ&sig2=GYET6uHBNg73pzi5ZfgFnA&bvm=bv.121070826,d.amc&cad=rja
http://brazos.cs.tcu.edu/1516frogbdata/deliverables.html

Developer’s Manual v4.0

38

4.10.3 Data Files for Spark Recommender

 To get the data files, follow this link:http://grouplens.org/datasets/movielens/

 Here, you will find different sizes of the real movie ratings (100K, 1M, 10M, 20M

and 22M).
 For more details please refer to our User’s Manual and Research Results document.

4.10.4 Instructions

 To give the personalized ratings for any number of users, run the python script

named “rateMovies” and follow the instructions: Keep in mind that the movies.dat

file (movies.dat file should be the same file for which you want to run the

recommender) should be in the same directory as the python script. This will

generate the file called “personalRatings.txt” that contains the personal ratings of the

user.

 Sample run of the python script is as follows:

 Note: To start the recommender on a cluster of 2 nodes, run the following

commands:

start-dfs.sh

start-yarn.sh

hadoop fs -mkdir -p /user/username1/spark_recommender/

hadoop fs -put /home/username/Downloads/ml-latest/ /user/username1/spark_recommender/ml-

latest/

hadoop fs -put /home/username/Desktop/personalRatings.txt/

/user/username1/spark_recommender/personalRatings.txt

./spark/bin/spark-submit --master yarn-cluster --num-executors 5 --executor-cores 1 --executor-memory

3G /home/username/workspace/MovieLensALS/src/MovieLensALSMain.py

hdfs://HadoopSMaster:9000/user/username1/spark_recommender/ml-latest/

hdfs://HadoopSMaster:9000/user/username1/spark_recommender/personalRatings.txt

hdfs://HadoopSMaster:9000/user/username1/spark_recommender/output22M

http://grouplens.org/datasets/movielens/

Developer’s Manual v4.0

39

 Once the job is running, you can see the progress on the web with all the executors and the

job process:

Developer’s Manual v4.0

40

4.11 K-Means Clustering

4.11.1 What is clustering?

 As the name suggests, Clustering implies grouping items together. But on the basis of

what?

 We use clustering in Big Data industry to group similar items/users together for better

data management.

 It has numerous applications in the business and helps them to target their customers

in a better way.

 K-Means algorithm is a simple, but widely used algorithm used for clustering. All

objects need to be represented as a set of numerical features. Also, the user has to

specify the number of groups (k) he wants.

4.11.2 Application of clustering

 Have you ever been creeped out of the advertisements on applications like Facebook,

YouTube or any other website you visit? If yes, it is because of clustering. If not, then

look carefully!

 The advertisements have become personalized to a great extent. If you searching

pattern on google shows that you read a lot about Big Data, notice how you are

flooded with Big Data company advertisements and jobs. It happened with us!

 There is no magic that goes behind this. The clustering algorithms help group similar

kind of users together.

 This is how a bank decides to give you a loan or not. Based on your social security,

past credit and other financial details they put you in an appropriate group.

4.11.3 Algorithm

 The first step is to choose the number of clusters (k). For example, the user chooses to

have 5 clusters.

 In the next step, we choose 5 random records as the centroids of these 5 clusters.

 Now we have 5 cluster centroids but they are randomly chosen.

 Next, we assign each record/point to a specific cluster based on the distance of that

point with the centroid of that cluster.

 Next, we compute the distances from each point and allot points to the cluster where

the distance from the centroid is minimum.

 Once we are done with re-allotting the points to their new and final clusters, we create

separate files for each cluster and save them into HDFS.

Developer’s Manual v4.0

41

5 Glossary of Terms

Apache Hadoop: Apache Hadoop is an open-source software framework written in Java for

distributed storage and distributed processing of very large data sets.

Apache Hadoop Yarn: YARN (Yet Another Resource Negotiator) is a cluster management

technology. It is characterized as a large-scale, distributed operating system for Big Data

applications

Apache Mahout: An Apache software used to produce free implementations of distributed

scalable machine learning algorithms that help in clustering and classification of data.

Apache Maven: A build automation tool for projects that uses XML to describe the project

the project that is being built and its dependencies on other external modules.

Apache Spark: Apache Spark is an open source cluster computing framework which allows

user programs to load data into a cluster's memory and query it repeatedly.

Big Data: Extremely large data sets that may be analyzed computationally to reveal

patterns, trends, and associations, especially relating to human behavior and interactions.

Collaborative Filtering: Method to predict the interests of a user based on interests of other

users.

Co-occurrence algorithm: Counting the number of times each pair of items occur together

and then predicting the interests of a user based on the user’s previous interests and most co-

occurred items.

HDFS: Hadoop Distributed File System is a Java based file system that provides scalable

and reliable data storage.

IDE: Integrated Development Environment.

K-means clustering: A way of vector quantization used for cluster analysis in data mining.

Map Reduce: A programming model and an associated implementation for processing and

generating large data sets with a parallel, distributed algorithm on a cluster.

MLlib: Apache Spark’s scalable machine learning library that consists of common learning

algorithms and utilities including classification, clustering, filtering etc.

PyDev: A Python IDE for Eclipse which is used in Python Development.

Root Access: Access to install various software and related items on Linux machines.

Scala: A programming language for general software applications.

Developer’s Manual v4.0

42

XML: XML stands for Extensible Markup Language that defines the protocol for encoding

documents in a format that is both, human and machine-readable.

